

Compact and Reliable Speckle Reduction

August 2017 Mark Ventura, Vice President Sales & Marketing

Optotune Switzerland AG | Bernstrasse 388 | CH-8953 Dietikon | Switzerland Phone +41 58 856 3011 | www.optotune.com | sales@optotune.com

• Introduction

- Active speckle reduction with CW lasers (oscillating diffusers)
 - Electroactive polymer based LSR
 - Reluctance force based LSR
 - Application examples
 - Light engine for laser projection
 - Micro/pico-projectors
 - Line generation
 - Fiber coupling
 - Microscopy
 - Available products

Optotune on a page

shaping the future of optics

Founded 2008

Leader in tunable optics

25 sales partners in **30** countries

70 employees

HQ located in Zurich, Switzerland New factory in Trnava, Slovakia

Privately owned

Optotune provides three core product lines

• Introduction

- Active speckle reduction with CW lasers (oscillating diffusers)
 - Electroactive polymer based LSR
 - Reluctance force based LSR
 - Application examples
 - Light engine for laser projection
 - Micro/pico-projectors
 - Line generation
 - Fiber coupling
 - Microscopy
 - Available products

Speckle reduction principle: A moving diffuser is used to increase angular diversity

By moving a diffusor multiple speckle patterns are overlapped to reduce the perceived speckle noise

• Introduction

- Active speckle reduction with CW lasers (oscillating diffusers)
 - Electroactive polymer based LSR
 - Reluctance force based LSR
 - Application examples
 - Light engine for laser projection
 - Micro/pico-projectors
 - Line generation
 - Fiber coupling
 - Microscopy
 - Available products

Electroactive polymer based LSR

• Diffuser motion made visible with stroboscopic lighting

This video is available on www.optotune.com

Core technology: Electroactive polymers (EAPs)

Advantages

- Large deformation
- Energy efficient
- Silent
- Highly precise

Applications

- Robotics
- Pumps
- Valves
- Energy harvesting

Optotune is first to apply EAPs in optics

Optotune's proprietary polymers offer ~93% transmission @ >300W/cm² damage threshold

EAP-based LSR

- + Compact (1mm thickness possible, only a few mm added laterally)
- + 2D movement
- + Light weight
- + Vibration-free & silent
- High voltage (300V, but low power)
- Only thin & light diffusors
- Limited in size (10mm CA)
- Polymer membrane cannot be AR coated

Spinning disk diffuser

- + Off-the-shelf component
- + Well established technology
- Large size (circular disk & motor)
- Diffuser area on disk is factors larger than actually needed (expensive)
- 1D angular movement
- Vibrations/noise
- Reliability issues due to mechanics
- Not suitable with elliptic diffusor

- Introduction
- Active speckle reduction with CW lasers (oscillating diffusers)
 - Electroactive polymer based LSR
 - Reluctance force based LSR
 - Application examples
 - Light engine for laser projection
 - Micro/pico-projectors
 - Line generation
 - Fiber coupling
 - Microscopy
 - Available products

LSR based on reluctance force actuator

$$F_{R} = \frac{1}{2}\mu_{0}A \frac{I^{2}N^{2}}{d^{2}}$$

Very high Q-factor allows for large amplitude at low power

Reluctance force LSR

- + Compact
- + Very large diffusers possible (HUD)
- + Long lifetime (no friction)
- + Withstands harsh environments
- + Low power (high Q-factor)
- + Low cost
- Some vibration might be transferred (depending on mechanical mount)
- 1D linear movement
 (2D effect if 2 LSR are combined)

Spinning disk diffuser

- + Off-the-shelf component
- + Well established technology
- Large size (circular disk & motor)
- Diffuser area on disk is factors larger than actually needed (expensive)
- 1D angular movement
- Not suitable with elliptic diffusor
- Vibrations/noise
- Reliability issues due to mechanics

Comparison of EAP & reluctance force-based LSR

	EAP-based LSR	Reluctance force-based LSR	
	PRISM		
Aperture	5 or 10 mm	18.5x18.5 mm	
Diffuser type	Optotune polymer	Glass or polycarbonate	
Transmission	93%	>98%	
Oscillation type	2D (circular)	1D (linear)	
Oscillation amplitude	300 um	800 um	
Resonant frequency	300 or 180 Hz	\sim 120 Hz (depends on diffuser weight)	
Weight	3g	11g	
Vibrations	None	Depends on mechanical mount	
Cover glasses	Required	None	
Operating lifetime	>2000h	>>15′000*	
Electronics	5 VDC (EAP is pulsed with 300V)	5 VDC (coils are pulsed with current)	

optotune

* Tests ongoing since Aug 2015, no failures yet

- Introduction
- Active speckle reduction with CW lasers (oscillating diffusers)
 - Electroactive polymer based LSR
 - Reluctance force based LSR
 - Application examples
 - Light engine for laser projection
 - Micro/pico-projectors
 - Line generation
 - Fiber coupling
 - Microscopy
 - Available products

The issue of using diffusers

- Diffuser acts as a large number of point sources, each with the NA of the diffuser angle
 - \rightarrow increase in etendue

- Introduction
- Active speckle reduction with CW lasers (oscillating diffusers)
 - Electroactive polymer based LSR
 - Reluctance force based LSR
 - Application examples
 - Light engine for laser projection
 - Micro/pico-projectors
 - Line generation
 - Fiber coupling
 - Microscopy
 - Available products

Example: Light engine for laser projector

- Effective speckle reduction has been shown using
 - an axicon as a focusing lens
 - Optotune's LSR
 - directly followed by a beam homogenizer
- Such a setup is compact, cost-saving and easy to align

Benefits of an axicon for speckle-reduction

- Goal: Generate a homogenous, speckle-free beam before DLP/LCOS
- For optimal speckle reduction, a uniform angle distribution is beneficial
- However, most lasers have a Gaussian beam profile

Exemplary setup (1/2)

Exemplary setup (2/2)

Design guidelines

- The LSR should be placed as close as possible to the homogenizer rod
- The spot on the LSR should be slightly smaller than the aperture of the homogenizer rod
- The collimation optics should be chosen such that the collimated laser beam diameter is ~2 times the desired focus spot diameter
- The apex angle Θ^* of the axicon should be chosen such that the angle incident on the LSR α_{in} fulfills: $\sqrt{\alpha_{in}^2 + \alpha_{LSR}^2} < \alpha_{accept.}$; α_{LSR} : diffusion angle LSR, α_{in} : acceptance angle homogenizer $*\Theta/2=90^\circ-2\alpha_{in}$

Exemplary performance of a despeckled laser projection system (1/2)

Exemplary performance of a despeckled laser projection system (2/2)

- Exposure: 1/20 sec
- Focal length: 34 mm

- Introduction
- Active speckle reduction with CW lasers (oscillating diffusers)
 - Electroactive polymer based LSR
 - Reluctance force based LSR
 - Application examples
 - Light engine for laser projection
 - Micro/pico-projectors
 - Line generation
 - Fiber coupling
 - Microscopy
 - Available products

In compact projectors FELs can be used right after the diffuser

For high optical efficiency (minimum "spill-over"): Diffuser Angle <= acceptance angle of FEL

Typical configuration for pico-projectors

- Introduction
- Active speckle reduction with CW lasers (oscillating diffusers)
 - Electroactive polymer based LSR
 - Reluctance force based LSR
 - Application examples
 - Light engine for laser projection
 - Micro/pico-projectors
 - Line generation
 - Fiber coupling
 - Microscopy
 - Available products

- Introduction
- Active speckle reduction with CW lasers (oscillating diffusers)
 - Electroactive polymer based LSR
 - Reluctance force based LSR
 - Application examples
 - Light engine for laser projection
 - Micro/pico-projectors
 - Line generation
 - Fiber coupling
 - Microscopy
 - Available products

Fiber coupling: Best layout is to image a spot on the diffuser

- Spot size on diffuser < diameter of fiber core
- No static diffuser allowed

Good speckle reduction shown with 75% efficiency

- Speckle reducer: LSR-5-17-17S-VIS with single 17° diffuser
- Fiber: 100 μ m core, 0.5 NA
- Off-the-shelf glass aspheres

- Introduction
- Active speckle reduction with CW lasers (oscillating diffusers)
 - Electroactive polymer based LSR
 - Reluctance force based LSR
 - Application examples
 - Light engine for laser projection
 - Micro/pico-projectors
 - Line generation
 - Fiber coupling
 - Microscopy
 - Available products

Optotune's LSR boosts image quality in superresolution fluorescence microscope (STORM)

Ref: P. Georgiades et al., Journal of Microscopy (2016), http://onlinelibrary.wiley.com/doi/10.1111/jmi.12453/full

- Introduction
- Active speckle reduction with CW lasers (oscillating diffusers)
 - Electroactive polymer based LSR
 - Reluctance force based LSR
 - Application examples
 - Light engine for laser projection
 - Micro/pico-projectors
 - Line generation
 - Fiber coupling
 - Microscopy
 - Available products

Available standard products based on EAP technology

Aperture	5 mm	10 mm	5 mm	10 mm		
Size (Ø or L x H)	41mm x 8.8mm	48mm x 8.8mm	17mm x 3.8mm	22mm x 3.8mm		
Standard diffuser angles*	6°, 12°, 17°, 24°					
Resonant frequency	300 Hz	180 Hz	300 Hz	180 Hz		
Oscillation amplitude	300 um	400 um	300 um	400 um		
Electronics	Integrated, CE certified	Integrated, CE certified	Optional, not certified	Optional, not certified		

Overview & status of reluctance-force LSRs

	Pico- projector	Line laser (µ-cylinder lens arrays)	Desktop- projector/ Laser TV	Cinema- projector	HUD
Diffuser [mm]	4.7x6.5	5x6	15x15	20x22	53x23
Aperture [mm]	4x5.5	5x5	12x12	18.5x18.5	50x20
Size [mm]	7x14x2	9.4x15.4x4	34x34x5	35x38x5	40x70x5
Oscillation	1D	1D	2x 1D	1D	2D
Amplitude [um]	400	400	800	800	1000
Frequency [Hz]	400	300	150	120	>60
Status	Alpha	Beta	Alpha	Production	Concept

• 3 diffuser types available from Optotune

- High-power coated fused silica: 8.5°
- Uncoated glass diffusers: 10, 20°

LSR-4C options

- Uncoated polycarbonate diffusers: 1, 5, 10, 20°
- Brass bracket available for prototyping
- Single or double configuration

LSR-4C-LL

shaping the future of optics

Optotune Switzerland AG Bernstrasse 388 CH-8953 Dietikon Switzerland

Phone: +41 58 856 3000 | Fax: +41 58 856 3001 www.optotune.com | sales@optotune.com